add some scripts.

This commit is contained in:
2025-02-24 14:51:51 +08:00
parent cad5aa11d6
commit 9622338750
27 changed files with 1859467 additions and 0 deletions

163
scripts/iafd/iafd_scrape.py Normal file
View File

@ -0,0 +1,163 @@
"""
Script Name:
Description: 从 https://www.iafd.com 上获取信息。利用cloudscraper绕过cloudflare
detail_fetch.py 从本地已经保存的列表数据,逐个拉取详情,并输出到文件。
list_fetch_astro.py 按照星座拉取数据,获得演员的信息列表。数据量适中,各详细字段较全
list_fetch_birth.py 按照生日拉取数据,获得演员的信息列表。数据量适中,各详细字段较全
list_fetch_ethnic.py 按照人种拉取数据,获得演员的信息列表。数据量大,但详细字段很多无效的
list_merge.py 上面三个列表的数据,取交集,得到整体数据。
iafd_scrape.py 借助 https://github.com/stashapp/CommunityScrapers 实现的脚本,可以输入演员的 iafd链接,获取兼容 stashapp 格式的数据。(作用不大,因为国籍、照片等字段不匹配)
html_format.py 负责读取已经保存的html目录, 提取信息,格式化输出。
data_merge.py 负责合并数据,它把从 iafd, javhd, thelordofporn 以及搭建 stashapp, 从上面更新到的演员数据(需导出)进行合并;
stashdb_merge.py 负责把从stashapp中导出的单个演员的json文件, 批量合并并输出; 通常我们需要把stashapp中导出的批量文件压缩并传输到data/tmp目录,解压后合并
从而获取到一份完整的数据列表。
Author: [Your Name]
Created Date: YYYY-MM-DD
Last Modified: YYYY-MM-DD
Version: 1.0
Modification History:
- YYYY-MM-DD [Your Name]:
- YYYY-MM-DD [Your Name]:
- YYYY-MM-DD [Your Name]:
"""
import json
import os
import subprocess
import time
import logging
from typing import List
# 设置日志配置
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# 预定义的 scrapers 目录
scrapers_dir = "/root/gitlabs/stashapp_CommunityScrapers/scrapers"
meta_file = "./data/iafd_meta.json"
cursor_file = "./data/iafd_cursor.txt"
output_dir = f"{scrapers_dir}/iafd_meta"
# 重试次数和间隔
MAX_RETRIES = 10
RETRY_DELAY = 5 # 5秒重试间隔
# 创建输出目录
os.makedirs(output_dir, exist_ok=True)
def read_processed_hrefs() -> set:
"""
读取已经处理过的 href
"""
processed_hrefs = set()
if os.path.exists(cursor_file):
with open(cursor_file, "r", encoding="utf-8") as f:
processed_hrefs = {line.strip().split(",")[1] for line in f if "," in line}
return processed_hrefs
def execute_scraper_command(href: str, idv: str) -> bool:
"""
执行命令抓取数据成功则返回True否则返回False。
包含重试机制。
"""
command = f"cd {scrapers_dir}; python3 -m IAFD.IAFD performer {href} > {output_dir}/{idv}.json"
attempt = 0
while attempt < MAX_RETRIES:
try:
logger.info(f"执行命令: {command}")
subprocess.run(command, shell=True, check=True)
return True
except subprocess.CalledProcessError as e:
logger.error(f"执行命令失败: {e}. 重试 {attempt + 1}/{MAX_RETRIES}...")
time.sleep(RETRY_DELAY)
attempt += 1
logger.error(f"命令执行失败,已尝试 {MAX_RETRIES} 次: {command}")
return False
def validate_json_file(idv: str) -> bool:
"""
校验 JSON 文件是否有效
"""
output_file = f"{output_dir}/{idv}.json"
try:
with open(output_file, "r", encoding="utf-8") as f:
content = f.read().strip()
json_data = json.loads(content) # 尝试解析 JSON
if "name" not in json_data:
raise ValueError("缺少 'name' 字段")
return True
except (json.JSONDecodeError, ValueError) as e:
logger.error(f"解析失败,删除无效文件: {output_file}. 错误: {e}")
os.remove(output_file)
return False
def process_iafd_meta(data: List[dict], processed_hrefs: set) -> None:
"""
处理 iafd_meta.json 中的数据
"""
for entry in data:
person = entry.get("person")
href = entry.get("href")
if not person or not href:
logger.warning(f"跳过无效数据: {entry}")
continue
# 解析 href 提取 id
try:
idv = href.split("id=")[-1]
except IndexError:
logger.error(f"无法解析 ID: {href}")
continue
output_file = f"{output_dir}/{idv}.json"
# 跳过已处理的 href
if href in processed_hrefs:
logger.info(f"已处理,跳过: {person}, {href}")
continue
# 执行数据抓取
if not execute_scraper_command(href, idv):
continue
# 校验 JSON 文件
if not validate_json_file(idv):
continue
# 记录已处理数据
with open(cursor_file, "a", encoding="utf-8") as f:
f.write(f"{person},{href}\n")
logger.info(f"成功处理: {person} - {href}")
def main():
"""
主程序执行函数
"""
# 读取已处理的 href
processed_hrefs = read_processed_hrefs()
# 读取 iafd_meta.json 数据
try:
with open(meta_file, "r", encoding="utf-8") as f:
data = json.load(f)
except json.JSONDecodeError as e:
logger.error(f"读取 iafd_meta.json 错误: {e}")
return
# 处理数据
process_iafd_meta(data, processed_hrefs)
if __name__ == "__main__":
main()