116 lines
3.3 KiB
Python
116 lines
3.3 KiB
Python
"""
|
||
Script Name:
|
||
Description: 统计hs300的成分股,在区间内的涨幅。取前复权值
|
||
|
||
Author: [Your Name]
|
||
Created Date: YYYY-MM-DD
|
||
Last Modified: YYYY-MM-DD
|
||
Version: 1.0
|
||
|
||
Modification History:
|
||
- YYYY-MM-DD [Your Name]:
|
||
- YYYY-MM-DD [Your Name]:
|
||
- YYYY-MM-DD [Your Name]:
|
||
"""
|
||
|
||
import pymysql
|
||
import pandas as pd
|
||
import time
|
||
from datetime import datetime
|
||
import logging
|
||
import config
|
||
|
||
# 设置日志
|
||
config.setup_logging()
|
||
logger = logging.getLogger()
|
||
|
||
# 数据库连接函数
|
||
def connect_to_db():
|
||
return pymysql.connect(**config.db_config)
|
||
|
||
# 获取 2024-09-23 对应的 close 值
|
||
def get_close_for_date(df, date):
|
||
filtered = df[df['time_key'] == date]
|
||
if not filtered.empty:
|
||
return filtered.iloc[0]['close']
|
||
else:
|
||
logger.warning(f"No data found for date: {date}")
|
||
return None
|
||
|
||
# 获取年内涨幅的 c1, c3 值(最早和最晚的 close 值)
|
||
def get_first_last_close(df):
|
||
df_sorted = df.sort_values(by='time_key')
|
||
c1 = df_sorted.iloc[0]['close'] # 最早的 close 值
|
||
c3 = df_sorted.iloc[-1]['close'] # 最晚的 close 值
|
||
return c1, c3
|
||
|
||
# 获取最大值和最小值的 close 值
|
||
def get_max_min_close(df):
|
||
max_close = df['close'].max()
|
||
min_close = df['close'].min()
|
||
return max_close, min_close
|
||
|
||
# 主函数
|
||
def main():
|
||
try:
|
||
connection = connect_to_db()
|
||
query = """
|
||
SELECT code, name, time_key, close
|
||
FROM hs300_qfq_his
|
||
WHERE time_key >= '2021-01-01 00:00:00'
|
||
"""
|
||
df = pd.read_sql(query, connection)
|
||
|
||
# 确定要查询的日期
|
||
target_date = '2024-09-23 00:00:00'
|
||
df['time_key'] = pd.to_datetime(df['time_key'])
|
||
|
||
results = []
|
||
|
||
for code, group in df.groupby('code'):
|
||
logger.info(f"Processing code: {code}")
|
||
|
||
# 获取 c1(最早的 close)和 c3(最晚的 close)
|
||
c1, c3 = get_first_last_close(group)
|
||
|
||
# 获取 c2(2024-09-23 的 close 值)
|
||
c2 = get_close_for_date(group, target_date)
|
||
|
||
if c1 is None or c2 is None or c3 is None:
|
||
logger.warning(f"Skipping code {code} due to missing close values.")
|
||
continue
|
||
|
||
# 计算年内涨幅和自2024-09-23以来的涨幅
|
||
year_growth_rate = (c3 / c1 - 1) if c1 else None
|
||
growth_since_2024_09_23 = (c3 / c2 - 1) if c2 else None
|
||
|
||
# 获取年内的最大和最小 close 值
|
||
c4, c5 = get_max_min_close(group)
|
||
year_volatility = (c4 / c5 - 1) if c4 and c5 else None
|
||
|
||
results.append({
|
||
'code': code,
|
||
'name': group['name'].iloc[0],
|
||
'year_growth_rate': year_growth_rate,
|
||
'growth_since_2024_09_23': growth_since_2024_09_23,
|
||
'year_volatility': year_volatility
|
||
})
|
||
|
||
time.sleep(1)
|
||
|
||
# 将结果转换为 DataFrame 并显示
|
||
result_df = pd.DataFrame(results)
|
||
print(result_df)
|
||
|
||
# 你可以选择将结果保存到 CSV 文件中
|
||
result_df.to_csv('./result/stat_grouth_rate_since2021.csv', index=False)
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error occurred: {e}")
|
||
finally:
|
||
if connection:
|
||
connection.close()
|
||
|
||
if __name__ == "__main__":
|
||
main()
|
||
|