147 lines
5.8 KiB
SQL
147 lines
5.8 KiB
SQL
-- 更新 hs_index 表中的code
|
||
UPDATE hs_index SET code = CONCAT('SZ.' , code_inner) WHERE exchange_eng LIKE 'Shenzhen%'
|
||
UPDATE hs_index SET code = CONCAT('SH.' , code_inner) WHERE exchange_eng LIKE 'Shanghai%'
|
||
|
||
-- 沪深300独有代码
|
||
SELECT * FROM hs_index hi WHERE code_inner not in (SELECT code_inner from hs_index hi2 WHERE index_code='000510')
|
||
-- 上证A510独有代码
|
||
SELECT * FROM hs_index hi WHERE code_inner not in (SELECT code_inner from hs_index hi2 WHERE index_code='000300')
|
||
-- 共同的代码
|
||
SELECT * FROM hs_index hi WHERE index_code='000510' and code_inner in (SELECT code_inner from hs_index hi2 WHERE index_code='000300')
|
||
|
||
-- 校验使用复权因子计算出的前复权价格,与直接从接口读取的前复权价格的差异
|
||
select a.code, a.time_key, a.close, b.qfq_close, a.close - b.qfq_close as diff
|
||
from stockdb.sp500_qfq_his_202410 a, stockdb.sp500_ajust_kline_202410 b
|
||
WHERE a.code = b.code and a.time_key = b.time_key
|
||
|
||
-- 校验使用复权因子计算出的前复权价格,与直接从接口读取的前复权价格的差异
|
||
select a.code, a.time_key, a.close, b.qfq_close, a.close - b.qfq_close as diff
|
||
from stockdb.hs300_qfq_his a, stockdb.hs300_ajust_kline_202410 b
|
||
WHERE a.code = b.code and a.time_key = b.time_key
|
||
|
||
|
||
-- 统计 year_diff = 10000 的所有记录中, win_rate 在不同区间的分布情况,给出每个区间的 行数,以及占整体的比例
|
||
WITH filtered_data AS (
|
||
SELECT win_rate
|
||
FROM hs300_5years_yield_stats_2410
|
||
WHERE year_diff = 10000
|
||
)
|
||
SELECT
|
||
CASE
|
||
WHEN win_rate >= 0.99995 THEN '100%'
|
||
WHEN win_rate >= 0.9 AND win_rate < 0.99995 THEN '90%~100%'
|
||
WHEN win_rate >= 0.5 AND win_rate < 0.9 THEN '50% ~ 90%'
|
||
WHEN win_rate >= 0.2 AND win_rate < 0.5 THEN '20% ~ 50%'
|
||
ELSE '20% 以下'
|
||
END AS win_rate_range,
|
||
ROUND(COUNT(*) / (SELECT COUNT(*) FROM filtered_data) * 100, 2) AS percentage,
|
||
COUNT(*) AS count
|
||
FROM filtered_data
|
||
GROUP BY win_rate_range
|
||
ORDER BY
|
||
CASE win_rate_range
|
||
WHEN '100%' THEN 1
|
||
WHEN '90%~100%' THEN 2
|
||
WHEN '50% ~ 90%' THEN 3
|
||
WHEN '20% ~ 50%' THEN 4
|
||
ELSE 5
|
||
END;
|
||
;
|
||
|
||
-- annual_median_yield_rate 代表了投资的年化回报率的中位数,我们想要统计在 year_diff = 10000 的所有记录中,中位数的分布情况。
|
||
-- 首先把所有记录按照中位数降序排列,然后把所有记录的条数分成10等份,我们要输出的是 每一个等份下面,中位数的区间,以及等份的记录条数。
|
||
WITH ranked_data AS (
|
||
SELECT
|
||
annual_median_yield_rate,
|
||
NTILE(10) OVER (ORDER BY annual_median_yield_rate DESC) AS tile_rank
|
||
FROM sp500_5years_yield_stats_2410
|
||
WHERE year_diff = 10000
|
||
)
|
||
SELECT
|
||
MAX(annual_median_yield_rate) AS max_yield_rate,
|
||
MIN(annual_median_yield_rate) AS min_yield_rate,
|
||
COUNT(*) AS record_count
|
||
FROM ranked_data
|
||
GROUP BY tile_rank
|
||
ORDER BY tile_rank;
|
||
|
||
-- max_deficit_days 是买入即亏损的最大时长。我们统计在 year_diff = 10000 的所有记录中,按照之前定义的胜率分布下,每一个胜率分布区间内,max_deficit_days 的最大值,最小值,和平均值。
|
||
WITH filtered_data AS (
|
||
SELECT win_rate, max_deficit_days
|
||
FROM sp500_5years_yield_stats_2410
|
||
WHERE year_diff = 10000
|
||
)
|
||
SELECT
|
||
CASE
|
||
WHEN win_rate >= 0.99995 THEN '100%'
|
||
WHEN win_rate >= 0.9 AND win_rate < 0.99995 THEN '90%~100%'
|
||
WHEN win_rate >= 0.5 AND win_rate < 0.9 THEN '50% ~ 90%'
|
||
WHEN win_rate >= 0.2 AND win_rate < 0.5 THEN '20% ~ 50%'
|
||
ELSE '20% 以下'
|
||
END AS win_rate_range,
|
||
MAX(max_deficit_days) AS max_deficit,
|
||
MIN(max_deficit_days) AS min_deficit,
|
||
ROUND(AVG(max_deficit_days), 2) AS avg_deficit
|
||
FROM filtered_data
|
||
GROUP BY win_rate_range
|
||
ORDER BY
|
||
CASE win_rate_range
|
||
WHEN '100%' THEN 1
|
||
WHEN '90%~100%' THEN 2
|
||
WHEN '50% ~ 90%' THEN 3
|
||
WHEN '20% ~ 50%' THEN 4
|
||
ELSE 5
|
||
END;
|
||
|
||
|
||
-- 提取 year_diff = 10000 的所有记录中,win_rate >= 0.99995 的所有记录的 code, name, max_yield_rate, median_yield_rate, annual_max_yield_rate, annual_median_yield_rate, max_deficit_days
|
||
SELECT
|
||
code,
|
||
name,
|
||
max_yield_rate,
|
||
median_yield_rate,
|
||
annual_max_yield_rate,
|
||
annual_median_yield_rate,
|
||
max_deficit_days
|
||
FROM hs300_5years_yield_stats_2410
|
||
WHERE year_diff = 10000
|
||
AND win_rate >= 0.99995;
|
||
|
||
|
||
-- 对每个不同的 code,统计不同 year_diff (year_diff != 10000)下的最大 annual_median_yield_rate 对应的 year_diff ,我们就得到了 code , 最优 year_diff 的结果;然后对 year_diff 进行分组统计对应的行数,以及占总行数的比例。
|
||
WITH best_year_diff_per_code AS (
|
||
SELECT code,
|
||
year_diff,
|
||
annual_median_yield_rate,
|
||
RANK() OVER (PARTITION BY code ORDER BY annual_median_yield_rate DESC) AS rank_by_yield
|
||
FROM sp500_5years_yield_stats_2410
|
||
WHERE year_diff != 10000
|
||
)
|
||
SELECT
|
||
year_diff,
|
||
ROUND(COUNT(*) / (SELECT COUNT(*) FROM best_year_diff_per_code WHERE rank_by_yield = 1) * 100, 2) AS percentage,
|
||
COUNT(*) AS record_count
|
||
FROM best_year_diff_per_code
|
||
WHERE rank_by_yield = 1
|
||
GROUP BY year_diff
|
||
ORDER BY year_diff;
|
||
|
||
|
||
|
||
-- 对每个不同的 code,统计不同 year_diff (year_diff != 10000)下的最大 annual_median_yield_rate 对应的 year_diff ,我们就得到了 code , 最优 year_diff 的结果;输出这个结果。
|
||
WITH best_year_diff_per_code AS (
|
||
SELECT
|
||
code,
|
||
year_diff,
|
||
annual_median_yield_rate,
|
||
RANK() OVER (PARTITION BY code ORDER BY annual_median_yield_rate DESC) AS rank_by_yield
|
||
FROM sp500_5years_yield_stats_2410
|
||
WHERE year_diff != 10000
|
||
)
|
||
SELECT
|
||
code,
|
||
year_diff AS best_year_diff,
|
||
annual_median_yield_rate AS max_annual_median_yield_rate
|
||
FROM best_year_diff_per_code
|
||
WHERE rank_by_yield = 1
|
||
ORDER BY code; |