278 lines
12 KiB
Python
278 lines
12 KiB
Python
"""
|
||
Script Name:
|
||
Description: 获取沪深300成分股的最新股价, 并计算年内涨幅, 924以来的涨幅, 市盈率, 股息率等。
|
||
调用em历史数据接口。
|
||
|
||
Author: [Your Name]
|
||
Created Date: YYYY-MM-DD
|
||
Last Modified: YYYY-MM-DD
|
||
Version: 1.0
|
||
|
||
Modification History:
|
||
- YYYY-MM-DD [Your Name]:
|
||
- YYYY-MM-DD [Your Name]:
|
||
- YYYY-MM-DD [Your Name]:
|
||
"""
|
||
|
||
import pymysql
|
||
import logging
|
||
import csv
|
||
import os
|
||
import re
|
||
import time
|
||
import pandas as pd
|
||
import numpy as np
|
||
from datetime import datetime
|
||
import argparse
|
||
import src.crawling.stock_hist_em as his_em
|
||
import src.logger.logger as logger
|
||
from src.config.config import global_stock_data_dir
|
||
from src.crawler.zixuan.xueqiu_zixuan import XueQiuStockFetcher
|
||
from src.sqlalchemy.models.stockdb import DailySanpModel, Base
|
||
from sqlalchemy import create_engine
|
||
from sqlalchemy.orm import sessionmaker
|
||
from src.sqlalchemy.config import global_db_url
|
||
from .trading_day import TradingDayChecker
|
||
from src.utils.send_to_wecom import send_to_wecom
|
||
|
||
# 配置日志
|
||
logger.setup_logging()
|
||
|
||
current_date = datetime.now().strftime("%Y%m%d")
|
||
current_year = datetime.now().strftime("%Y")
|
||
|
||
res_dir = global_stock_data_dir
|
||
debug = False
|
||
|
||
# 拉取数据
|
||
market_fs = {
|
||
"cn": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048",
|
||
"hk": "m:128 t:3,m:128 t:4,m:128 t:1,m:128 t:2",
|
||
"us": "m:105,m:106,m:107"
|
||
}
|
||
|
||
# 刷新代码列表,并返回
|
||
def flush_code_map():
|
||
code_id_map_em_df = his_em.code_id_map_em()
|
||
print(code_id_map_em_df)
|
||
return code_id_map_em_df
|
||
|
||
# 获取所有市场的当年股价快照,带重试机制。
|
||
def fetch_snap_all(market_id, trading_date) -> pd.DataFrame:
|
||
# 检查文件是否存在
|
||
os.makedirs(res_dir, exist_ok=True)
|
||
file_name = f'{res_dir}/snapshot_em_{market_id}_{trading_date}.csv'
|
||
if os.path.exists(file_name) and debug:
|
||
try:
|
||
# 读取本地文件
|
||
snap_data = pd.read_csv(file_name, encoding='utf-8')
|
||
logging.info(f"load snapshot data from local: {file_name}\n\n")
|
||
return snap_data
|
||
except Exception as e:
|
||
logging.warning(f"读取本地文件失败: {e},将重新拉取数据\n\n")
|
||
|
||
result = pd.DataFrame()
|
||
fs = market_fs.get(market_id, None)
|
||
if not fs:
|
||
logging.error(f"未找到市场 {market_id} 的数据源配置,请检查 market_fs 配置")
|
||
return result
|
||
|
||
df = his_em.stock_zh_a_spot_em(fs, fs_desc=market_id)
|
||
if df.empty:
|
||
logging.warning(f'{market_id} empty data. please check.')
|
||
return pd.DataFrame()
|
||
else:
|
||
logging.info(f'get {market_id} stock snapshot. stock count: {len(df)}')
|
||
# 关键步骤:添加market_id列,值为当前市场标识
|
||
df['market_id'] = market_id # 新增一列,记录数据所属市场
|
||
df['curr_date'] = trading_date
|
||
result = pd.concat([result, df], ignore_index=True)
|
||
|
||
result.to_csv(file_name, index=False, encoding='utf-8')
|
||
logging.info(f"get snapshot data and write to file: {file_name}\n\n")
|
||
|
||
return result
|
||
|
||
|
||
def load_xueqiu_codes():
|
||
# 替换为你的实际cookie
|
||
USER_COOKIES = "u=5682299253; HMACCOUNT=AA6F9D2598CE96D7; xq_is_login=1; snbim_minify=true; _c_WBKFRo=BuebJX5KAbPh1PGBVFDvQTV7x7VF8W2cvWtaC99v; _nb_ioWEgULi=; cookiesu=661740133906455; device_id=fbe0630e603f726742fec4f9a82eb5fb; s=b312165egu; bid=1f3e6ffcb97fd2d9b4ddda47551d4226_m7fv1brw; Hm_lvt_1db88642e346389874251b5a1eded6e3=1751852390; xq_a_token=a0fd17a76966314ab80c960412f08e3fffb3ec0f; xqat=a0fd17a76966314ab80c960412f08e3fffb3ec0f; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjU2ODIyOTkyNTMsImlzcyI6InVjIiwiZXhwIjoxNzU0NzAzMjk5LCJjdG0iOjE3NTIxMTEyOTkyODYsImNpZCI6ImQ5ZDBuNEFadXAifQ.Vbs-LDgB4bCJI2N644DwfeptdcamKsAm2hbXxlPnJ_0fnTJhXp6T-2Gc6b6jmhTjXJIsWta8IuS0rQBB1L-9fKpUliNFHkv4lr7FW2x7QhrZ1D4lrvjihgBxKHq8yQl31uO6lmUOJkoRaS4LM1pmkSL_UOVyw8aUeuVjETFcJR1HFDHwWpHCLM8kY55fk6n1gEgDZnYNh1_FACqlm6LU4Vq14wfQgyF9sfrGzF8rxXX0nns_j-Dq2k8vN3mknh8yUHyzCyq6Sfqn6NeVdR0vPOciylyTtNq5kOUBFb8uJe48aV2uLGww3dYV8HbsgqW4k0zam3r3QDErfSRVIg-Usw; xq_r_token=1b73cbfb47fcbd8e2055ca4a6dc7a08905dacd7d; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1752714700; is_overseas=0; ssxmod_itna=QqfxBD2D9DRQPY5i7YYxiwS4GhDYu0D0dGMD3qiQGglDFqAPKDHKm=lerDUhGr5h044VYmkTtDlxWeDZDG9dDqx0orXU7BB411D+iENYYe2GG+=3X0xOguYo7I=xmAkwKhSSIXNG2A+DnmeDQKDoxGkDivoD0IYwDiiTx0rD0eDPxDYDG4mDDvvQ84DjmEmFfoGImAeQIoDbORhz74DROdDS73A+IoGqW3Da1A3z8RGDmKDIhjozmoDFOL3Yq0k54i3Y=Ocaq0OZ+BGR0gvh849m1xkHYRr/oRCYQD4KDx5qAxOx20Z3isrfDxRvt70KGitCH4N4DGbh5gYH7x+GksdC58CNR3sx=1mt2qxkGd+QmoC5ZGYdixKG52q4iiqPj53js4D; ssxmod_itna2=QqfxBD2D9DRQPY5i7YYxiwS4GhDYu0D0dGMD3qiQGglDFqAPKDHKm=lerDUhGr5h044VYmkwYDioSBbrtN4=Htz/DUihxz=w4aD"
|
||
|
||
# 初始化获取器
|
||
fetcher = XueQiuStockFetcher(
|
||
cookies=USER_COOKIES,
|
||
size=1000,
|
||
retry_count=3
|
||
)
|
||
all_codes = []
|
||
stocks = fetcher.get_stocks_by_group(
|
||
category=1, # 股票
|
||
pid=-1 # 全部
|
||
)
|
||
if stocks:
|
||
for item in stocks:
|
||
code = item['symbol']
|
||
mkt = item['marketplace']
|
||
|
||
if mkt:
|
||
if mkt.lower() == 'cn':
|
||
code = format_stock_code(code)
|
||
elif mkt.lower() == 'hk':
|
||
code = f"HK.{code}"
|
||
else:
|
||
code = f"US.{code}"
|
||
|
||
all_codes.append({'code': code, 'code_name': item['name']})
|
||
|
||
return all_codes
|
||
|
||
|
||
def insert_stock_data_to_db(dataframe, db_url=global_db_url):
|
||
"""
|
||
将pandas DataFrame中的股票数据插入到MySQL数据库
|
||
|
||
参数:
|
||
dataframe: 包含股票数据的pandas DataFrame
|
||
db_url: 数据库连接字符串,格式如'mysql+mysqldb://user:password@host:port/dbname?charset=utf8mb4'
|
||
"""
|
||
# 创建数据库引擎
|
||
engine = create_engine(db_url)
|
||
|
||
# 创建数据表(如果不存在)
|
||
Base.metadata.create_all(engine)
|
||
|
||
# 创建会话
|
||
Session = sessionmaker(bind=engine)
|
||
session = Session()
|
||
|
||
# 注意:pandas中NaN在数值列用np.nan,字符串列用pd.NA,统一替换为None
|
||
dataframe = dataframe.replace({np.nan: None, pd.NA: None})
|
||
try:
|
||
count_insert = 0
|
||
count_update = 0
|
||
# 遍历DataFrame的每一行
|
||
for _, row in dataframe.iterrows():
|
||
# 先检查 code 是否存在且有效
|
||
if not row.get('代码'):
|
||
logging.warning(f"警告:发现无效的 code 值,跳过该行数据。行数据:{row['名称']}")
|
||
continue # 跳过无效行
|
||
|
||
# 创建股票数据对象
|
||
stock = DailySanpModel(
|
||
code=row['代码'],
|
||
curr_date=row['curr_date'],
|
||
name=row['名称'],
|
||
market_id=row['market_id'],
|
||
code_prefix=row['代码前缀'],
|
||
industry=row['所处行业'],
|
||
listing_date=pd.to_datetime(row['上市时间']).date() if row['上市时间'] else None,
|
||
|
||
latest_price=row['最新价'],
|
||
price_change_percent=row['涨跌幅'],
|
||
price_change=row['涨跌额'],
|
||
volume=row['成交量'],
|
||
turnover=row['成交额'],
|
||
amplitude=row['振幅'],
|
||
turnover_rate=row['换手率'],
|
||
pe_dynamic=row['市盈率动'],
|
||
volume_ratio=row['量比'],
|
||
change_5min=row['5分钟涨跌'],
|
||
highest=row['最高'],
|
||
lowest=row['最低'],
|
||
opening=row['今开'],
|
||
previous_close=row['昨收'],
|
||
price_speed=row['涨速'],
|
||
|
||
total_market_cap=row['总市值'],
|
||
circulating_market_cap=row['流通市值'],
|
||
pb_ratio=row['市净率'],
|
||
change_60d=row['60日涨跌幅'],
|
||
change_ytd=row['年初至今涨跌幅'],
|
||
|
||
weighted_roe=row['加权净资产收益率'],
|
||
total_shares=row['总股本'],
|
||
circulating_shares=row['已流通股份'],
|
||
operating_revenue=row['营业收入'],
|
||
revenue_growth=row['营业收入同比增长'],
|
||
net_profit=row['归属净利润'],
|
||
net_profit_growth=row['归属净利润同比增长'],
|
||
undistributed_profit_per_share=row['每股未分配利润'],
|
||
gross_margin=row['毛利率'],
|
||
asset_liability_ratio=row['资产负债率'],
|
||
reserve_per_share=row['每股公积金'],
|
||
earnings_per_share=row['每股收益'],
|
||
net_asset_per_share=row['每股净资产'],
|
||
pe_static=row['市盈率静'],
|
||
pe_ttm=row['市盈率TTM'],
|
||
report_period=row['报告期']
|
||
)
|
||
# 2. 执行merge:存在则更新,不存在则插入
|
||
merged_stock = session.merge(stock)
|
||
|
||
# 3. 统计插入/更新数量
|
||
if merged_stock in session.new: # 新插入
|
||
count_insert += 1
|
||
elif merged_stock in session.dirty: # 已更新
|
||
count_update += 1
|
||
|
||
# 提交事务
|
||
session.commit()
|
||
logging.info(f"成功插入 {count_insert} 条,更新 {count_update} 条数据")
|
||
|
||
except Exception as e:
|
||
# 发生错误时回滚
|
||
session.rollback()
|
||
logging.warning(f"插入数据失败: {str(e)}")
|
||
finally:
|
||
# 关闭会话
|
||
session.close()
|
||
|
||
|
||
def main(list, args_debug, notify):
|
||
global debug
|
||
debug = args_debug
|
||
|
||
# 获取快照数据
|
||
market_list = list.split(',')
|
||
if not market_list:
|
||
logging.error("未指定市场列表,请使用 --list 参数指定市场(如 cn,hk,us)")
|
||
return
|
||
em_code_map = {}
|
||
for market_id in market_list:
|
||
# 获取交易日期
|
||
trading_day_checker = TradingDayChecker()
|
||
if not trading_day_checker.is_trading_day_today(market_id.upper()) and not debug:
|
||
logging.info(f"非交易日,不处理 {market_id} 市场,当前交易日期: {trading_date}, 当前日期: {current_date}")
|
||
continue
|
||
|
||
trading_date = trading_day_checker.get_trading_date(market_id.upper())
|
||
if not trading_date:
|
||
logging.error(f"无法获取 {market_id} 市场的交易日期")
|
||
continue
|
||
|
||
# 获取快照数据
|
||
snap_data = fetch_snap_all(market_id, trading_date)
|
||
if snap_data.empty:
|
||
logging.error(f"未获取到 {market_id} 市场的快照数据")
|
||
continue
|
||
if snap_data.empty:
|
||
logging.error(f"fetching snapshot data error for {market_id}!")
|
||
continue
|
||
insert_stock_data_to_db(dataframe=snap_data)
|
||
logging.info(f"成功获取 {market_id} 市场的快照数据,记录数: {len(snap_data)}")
|
||
|
||
if notify:
|
||
send_to_wecom(f"fetched {market_id} snap data, counts: {len(snap_data)}")
|
||
|
||
em_code_map.update({row['代码']: row['代码前缀'] for _, row in snap_data.iterrows()})
|
||
time.sleep(5)
|
||
|
||
if __name__ == "__main__":
|
||
# 命令行参数处理
|
||
parser = argparse.ArgumentParser(description='获取指定市场的快照数据并存储到数据库')
|
||
parser.add_argument('--list', type=str, default='cn,hk,us', help='Stocklist to process (cn,hk,us)')
|
||
parser.add_argument('--debug', action='store_true', help='Enable debug mode (limit records)')
|
||
parser.add_argument('--notify', action='store_true', help='notify to wecom')
|
||
args = parser.parse_args()
|
||
|
||
main(args.list, args.debug, args.notify) |