modify scripts
This commit is contained in:
19
cron/daily_snap.sh
Executable file
19
cron/daily_snap.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
|
||||
# 项目基础路径
|
||||
PROJ_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)
|
||||
|
||||
echo "项目基础路径: ${PROJ_DIR}"
|
||||
|
||||
export DB_HOST=127.0.0.1
|
||||
cd "${PROJ_DIR}" || exit 1
|
||||
|
||||
# 从命令行读取参数,并传递给python脚本
|
||||
if [ $# -gt 0 ]; then
|
||||
python3 -m src.static.daily_snap_em --list="$@" --notify
|
||||
else
|
||||
python3 -m src.static.daily_snap_em --list="cn" --notify
|
||||
fi
|
||||
|
||||
|
||||
|
||||
@ -1,116 +0,0 @@
|
||||
"""
|
||||
Script Name:
|
||||
Description: 统计hs300的成分股,在区间内的涨幅。取前复权值
|
||||
|
||||
Author: [Your Name]
|
||||
Created Date: YYYY-MM-DD
|
||||
Last Modified: YYYY-MM-DD
|
||||
Version: 1.0
|
||||
|
||||
Modification History:
|
||||
- YYYY-MM-DD [Your Name]:
|
||||
- YYYY-MM-DD [Your Name]:
|
||||
- YYYY-MM-DD [Your Name]:
|
||||
"""
|
||||
|
||||
import pymysql
|
||||
import pandas as pd
|
||||
import time
|
||||
from datetime import datetime
|
||||
import src.logger.logger as logger
|
||||
import src.config.config as config
|
||||
|
||||
# 设置日志
|
||||
logger.setup_logging()
|
||||
logger = logger.getLogger()
|
||||
|
||||
# 数据库连接函数
|
||||
def connect_to_db():
|
||||
return pymysql.connect(**config.db_config)
|
||||
|
||||
# 获取 2024-09-23 对应的 close 值
|
||||
def get_close_for_date(df, date):
|
||||
filtered = df[df['time_key'] == date]
|
||||
if not filtered.empty:
|
||||
return filtered.iloc[0]['close']
|
||||
else:
|
||||
logger.warning(f"No data found for date: {date}")
|
||||
return None
|
||||
|
||||
# 获取年内涨幅的 c1, c3 值(最早和最晚的 close 值)
|
||||
def get_first_last_close(df):
|
||||
df_sorted = df.sort_values(by='time_key')
|
||||
c1 = df_sorted.iloc[0]['close'] # 最早的 close 值
|
||||
c3 = df_sorted.iloc[-1]['close'] # 最晚的 close 值
|
||||
return c1, c3
|
||||
|
||||
# 获取最大值和最小值的 close 值
|
||||
def get_max_min_close(df):
|
||||
max_close = df['close'].max()
|
||||
min_close = df['close'].min()
|
||||
return max_close, min_close
|
||||
|
||||
# 主函数
|
||||
def main():
|
||||
try:
|
||||
connection = connect_to_db()
|
||||
query = """
|
||||
SELECT code, name, time_key, close
|
||||
FROM hs300_qfq_his
|
||||
WHERE time_key >= '2021-01-01 00:00:00'
|
||||
"""
|
||||
df = pd.read_sql(query, connection)
|
||||
|
||||
# 确定要查询的日期
|
||||
target_date = '2024-09-23 00:00:00'
|
||||
df['time_key'] = pd.to_datetime(df['time_key'])
|
||||
|
||||
results = []
|
||||
|
||||
for code, group in df.groupby('code'):
|
||||
logger.info(f"Processing code: {code}")
|
||||
|
||||
# 获取 c1(最早的 close)和 c3(最晚的 close)
|
||||
c1, c3 = get_first_last_close(group)
|
||||
|
||||
# 获取 c2(2024-09-23 的 close 值)
|
||||
c2 = get_close_for_date(group, target_date)
|
||||
|
||||
if c1 is None or c2 is None or c3 is None:
|
||||
logger.warning(f"Skipping code {code} due to missing close values.")
|
||||
continue
|
||||
|
||||
# 计算年内涨幅和自2024-09-23以来的涨幅
|
||||
year_growth_rate = (c3 / c1 - 1) if c1 else None
|
||||
growth_since_2024_09_23 = (c3 / c2 - 1) if c2 else None
|
||||
|
||||
# 获取年内的最大和最小 close 值
|
||||
c4, c5 = get_max_min_close(group)
|
||||
year_volatility = (c4 / c5 - 1) if c4 and c5 else None
|
||||
|
||||
results.append({
|
||||
'code': code,
|
||||
'name': group['name'].iloc[0],
|
||||
'year_growth_rate': year_growth_rate,
|
||||
'growth_since_2024_09_23': growth_since_2024_09_23,
|
||||
'year_volatility': year_volatility
|
||||
})
|
||||
|
||||
time.sleep(1)
|
||||
|
||||
# 将结果转换为 DataFrame 并显示
|
||||
result_df = pd.DataFrame(results)
|
||||
print(result_df)
|
||||
|
||||
# 你可以选择将结果保存到 CSV 文件中
|
||||
result_df.to_csv('./result/stat_grouth_rate_since2021.csv', index=False)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error occurred: {e}")
|
||||
finally:
|
||||
if connection:
|
||||
connection.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user