modify scripts

This commit is contained in:
2025-08-12 16:06:22 +08:00
parent feb7291c83
commit f12e394d5c
2 changed files with 19 additions and 116 deletions

19
cron/daily_snap.sh Executable file
View File

@ -0,0 +1,19 @@
#!/bin/bash
# 项目基础路径
PROJ_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")/.." && pwd)
echo "项目基础路径: ${PROJ_DIR}"
export DB_HOST=127.0.0.1
cd "${PROJ_DIR}" || exit 1
# 从命令行读取参数并传递给python脚本
if [ $# -gt 0 ]; then
python3 -m src.static.daily_snap_em --list="$@" --notify
else
python3 -m src.static.daily_snap_em --list="cn" --notify
fi

View File

@ -1,116 +0,0 @@
"""
Script Name:
Description: 统计hs300的成分股在区间内的涨幅。取前复权值
Author: [Your Name]
Created Date: YYYY-MM-DD
Last Modified: YYYY-MM-DD
Version: 1.0
Modification History:
- YYYY-MM-DD [Your Name]:
- YYYY-MM-DD [Your Name]:
- YYYY-MM-DD [Your Name]:
"""
import pymysql
import pandas as pd
import time
from datetime import datetime
import src.logger.logger as logger
import src.config.config as config
# 设置日志
logger.setup_logging()
logger = logger.getLogger()
# 数据库连接函数
def connect_to_db():
return pymysql.connect(**config.db_config)
# 获取 2024-09-23 对应的 close 值
def get_close_for_date(df, date):
filtered = df[df['time_key'] == date]
if not filtered.empty:
return filtered.iloc[0]['close']
else:
logger.warning(f"No data found for date: {date}")
return None
# 获取年内涨幅的 c1, c3 值(最早和最晚的 close 值)
def get_first_last_close(df):
df_sorted = df.sort_values(by='time_key')
c1 = df_sorted.iloc[0]['close'] # 最早的 close 值
c3 = df_sorted.iloc[-1]['close'] # 最晚的 close 值
return c1, c3
# 获取最大值和最小值的 close 值
def get_max_min_close(df):
max_close = df['close'].max()
min_close = df['close'].min()
return max_close, min_close
# 主函数
def main():
try:
connection = connect_to_db()
query = """
SELECT code, name, time_key, close
FROM hs300_qfq_his
WHERE time_key >= '2021-01-01 00:00:00'
"""
df = pd.read_sql(query, connection)
# 确定要查询的日期
target_date = '2024-09-23 00:00:00'
df['time_key'] = pd.to_datetime(df['time_key'])
results = []
for code, group in df.groupby('code'):
logger.info(f"Processing code: {code}")
# 获取 c1最早的 close和 c3最晚的 close
c1, c3 = get_first_last_close(group)
# 获取 c22024-09-23 的 close 值)
c2 = get_close_for_date(group, target_date)
if c1 is None or c2 is None or c3 is None:
logger.warning(f"Skipping code {code} due to missing close values.")
continue
# 计算年内涨幅和自2024-09-23以来的涨幅
year_growth_rate = (c3 / c1 - 1) if c1 else None
growth_since_2024_09_23 = (c3 / c2 - 1) if c2 else None
# 获取年内的最大和最小 close 值
c4, c5 = get_max_min_close(group)
year_volatility = (c4 / c5 - 1) if c4 and c5 else None
results.append({
'code': code,
'name': group['name'].iloc[0],
'year_growth_rate': year_growth_rate,
'growth_since_2024_09_23': growth_since_2024_09_23,
'year_volatility': year_volatility
})
time.sleep(1)
# 将结果转换为 DataFrame 并显示
result_df = pd.DataFrame(results)
print(result_df)
# 你可以选择将结果保存到 CSV 文件中
result_df.to_csv('./result/stat_grouth_rate_since2021.csv', index=False)
except Exception as e:
logger.error(f"Error occurred: {e}")
finally:
if connection:
connection.close()
if __name__ == "__main__":
main()